domingo, 5 de junho de 2016



CURSO DE MATEMÁTICA PROFMAT 2015 SOLUÇÃO QUESTÃO 39 EXAME NACIONAL DE ACESSO ENA RLM.

Exercício da prova do Mestrado Profissional em Matemática em Rede Nacional (PROFMAT), da Sociedade Brasileira de Matemática (SBM). Questão do EXAME NACIONAL DE ACESSO (ENA) de 2015. Problema comentado em VídeoAula do Curso de Raciocínio Lógico Matemático RLM.

Questão 39. De um baralho comum de 52 cartas são retiradas, em sequência e sem reposição, duas cartas. De quantos modos isso pode ser feito de maneira que a primeira carta seja de ouros e a segunda carta não seja uma dama?
Informação: Um baralho de 52 cartas tem 4 naipes: copas, espadas, ouros e paus. Cada naipe possui 13 cartas: A(ás), 2, 3, 4, 5, 6, 7, 8, 9, 10, J (valete), Q (dama) e K (rei). Portanto há 4 reis, 4 damas, 4 valetes, 4 áses, etc.

(A) 611; (B) 612; (C) 624; (D) 625; (E) 637.

Princípio fundamental da contagem, pfc, arranjo, análise combinatória, permutação, contagem, quantidade, Estatística, Probabilidade, com, baralhos, cartas, naipes, copas, espadas, ouros, paus, primeira, retirada, segunda, Enem, exame nacional do ensino médio, vestibular, concurso público

Naipes:


Dividir o problema para resolvê-lo.

ASSISTA À VÍDEOAULA COM A RESOLUÇÃO DESTA QUESTÃO COMENTADA, PASSO A PASSO, NO SEGUINTE LINK:

Nenhum comentário:

Postar um comentário